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Abstract 

This paper treats development issues of the suburban areas of Belgrade city. A considerable growth that the 

city had experienced has led to excessive consumption of land and also to degradation of the landscape and 

loss of the natural biodiversity. This is why an augmentation of the current Master Plan within the 

administrative extents of the city is considered to be vital for consistent planning of suburban areas 

development. Model used in this paper considered defining land-use suitability, relying on available thematic 

data, including the following sources: topography, land-cover, geology, protected areas and some synthetic 

maps derived from these sources in a GIS environment. For this purpose Support Vector Machines (SVM) 

algorithm has been implemented in a typical supervised classification learning task. Two modelling schemes 

have been involved (since the main problem of the study was the unavailability of the land-use suitability in 

the testing area): MODEL1 has been built in the extents of the training area having only two land-use 

suitability classes at disposal (Unsuitable and Very Unsuitable) and extrapolated to the testing area within 

which the same two classes were known (thus available for model performance evaluation), while MODEL2 

has been trained on all four land-use suitability classes, and extrapolated to the testing area, with unknown 

land-use classes. The second model was then correlated with the first one in order to estimate its otherwise 

disputable performance. Results of MODEL1 were satisfactory, with high overall accuracy (85%). MODEL2 

visually shows a good tendency, and since it has at least 85% accuracy for those coincident two classes 

(Unsuitable and Very Unsuitable) with MODEL1, it is justified to assume that remaining two classes match 

similar accuracy rates. The model could be improved by more thorough optimization of the classifier 

parameters, which will require much longer experimenting costs. 
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INTRODUCTION 

Land-use suitability (LUS) analysis is a tool used to define future land uses or their potential. Suitability 

techniques enable environmental managers, planners and engineers to analyze the interactions among 

various factors. Analysts are then able to map these interactions in a variety of ways. Public officials and 

developers can use these maps to set policies and make decisions regarding the use of land. Contemporary 

environmental managers and planners are aware of the technological advancements in land-use allocation 

and suitability modelling. New methods of spatial analysis are now commonly used in the development of 

land-use plans, environmental impact reviews, and site selection studies for many different land uses and 

public and private facilities (Collins, 2001). One of the state-of-the-art methods involve machine learning 

techniques implemented hereinafter. Conventional methods on the other hand, are still needed to validate 

the outcomes and to calibrate these methods, which are still to be developed and perfected. 

The main objective of this study is to use available public data and process them in a GIS environment for 

estimating a model of LUS. There was a strong motif supporting this research, since in-charged City’s 



GIS Ostrava 2013 - Geoinformatics for City Transformation January 21 – 23, 2013, Ostrava 

 

government services have shown interest in extending the Master Plan (MP) to the Belgrade suburb areas, 

thus needing a sound LUS assessment. 

Belgrade has a long history of development under MP framework. First MP was The Plan of Borough in the 

trench by Emilijan Josimović from 1867 and last one (in power) is Master Plan of Belgrade 2021 (adopted in 

2003). The first pro-European Town Plan of Belgrade was introduced by Alban Chambon, a French architect, 

in 1912
1
. Since then, MPs had been published and adopted successively in 15–20 years intervals. 

The earliest applications of suitability analysis conducted by engineering geologists and civil engineers for 

Belgrade MP area, in form of hand-drawn sieve mapping overlays was done by Šutić et al. (1972). Later, 

numerous researchers performed similar suitability analysis for different purposes (urban planning, defining 

best/optimal road routes etc), but first work involving suitability analysis in GIS environment has been done in 

2009/2010 (Marjanović, 2009; Djurić, 2010) but none for Belgrade area. 

CASE STUDY AREA 

The study area includes the territory of Belgrade City, the capital of the Republic of Serbia. For the purpose 

of machine learning, study area has been divided into the following splits: training and testing area (Fig. 1). 

The training area included the territory of Belgrade MP, while the remaining part of the Belgrade City territory 

(which is herein considered as suburban area) was adopted as the testing area. The basic descriptions of 

these areas are given in Table 1. Geographic extents of Case Study Area are: 4994905N; 4902405S; 

7419130E and 7488830W (ArcGIS predefined spatial reference system: MGI_Transverse_Mercator/Zone 7) 

Table 1. Basic data about Case Study Area
2
 

 

Case Study Area Area (km
2
) Population (2011) 

Training 776  1 373 000 
Testing 2446 266 121 

 

Fig. 1. Geographic location of the study area (blank=training, hatched=testing area). 

                                                           
1
 Institute of Urbanism - Belgrade (http://www.urbel.com) 

2
 Republic of Serbia  population Census 2011 - First Results  (www.stat.gov.rs) 

http://www.urbel.com/default.aspx?ID=uzb_BG_planovi&LN=ENG#1867
http://www.urbel.com/default.aspx?ID=uzb_BG_planovi&LN=ENG#1867
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DATASET 

The dataset has been assembled from different resources, and required different pre-processing 

manipulations, dependent on the model requirements. It has been established as a set of featured raster 

layers in a GIS environment. 

COMPRESSIBILITY raster was made by reclassifying geological units. Basic Geological Maps in 1:100 000 

scale (sheets: Belgrade, Pančevo, Obrenovac and Smederevo) were digitized and then reclassified by using 

ground compressibility as a criterion. Five categories were defined by the degree of ground compressibility 

(Jovanović et. al, 1977; F.G. Bell, 2007): Very high, High, Medium, Low and Very low. Very high degree of 

compressibility was considered as very unsuitable for urbanization, and vice-versa (Fig. 2-a). The 

reclassification was done because original geological units were very diverse and complex for the analysis 

since they counted more than 50 classes. 

The LAND COVER project is a part of the Corine
3
 program and is intended to provide consistent localized 

geographical information on the land cover of all European countries. Corine methodology implies visual 

interpretation of false color composites (4, 3, 2) of Landsat TM images (30 m resolution), which turned as a 

very convenient resource for this research. The Corine land cover classes comprise of three levels, and 

herein, the third level has been used at 1:100 000 scale. New (intermediate) classification was formed, 

because the second level of Corine classes was too simple and third was too complex (Fig. 2-b). Land cover 

classes were modified (reclassified) into five classes (Table 2). 

Table 2. Land cover raster classification 

 

Corine Classes (Level 3) Reclassification 

Continuous urban fabric Class 1 (Built-up area) 

 Discontinuous urban fabric 

Industrial or commercial units 

Port areas 

Airports 

Construction sites 

Pastures Class 2 (Suitable for the urbanization) 

Natural grasslands 

Non-irrigated arable land Class 3 (Conditionally suitable for the urbanization) 

Complex cultivation patterns 

Land principally occupied by agriculture,  

with significant areas of natural vegetation 

Beaches, dunes, sands 

Green urban areas Class 4 (Unsuitable for the urbanization) 

Sport and leisure facilities 

Vineyards, Fruit trees and berry plantations 

Broad-leaved forest 

Coniferous forest 

Mixed forest 

Transitional woodland-shrub 

Road and rail networks and associated land 

Mineral extraction sites Class 5 (Very unsuitable for the urbanization) 

Dump sites 

Inland marshes 

Water courses, Water bodies 

                                                           
3
 European Environment Agency (www.eea.europa.eu) 
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When analyzing an area for urban development relief characteristics in generally play a major role (Tošković, 

2006). Therefore, initial computations considered generating 50 m resolution DIGITAL ELEVATION MODEL 

(DEM) (Hutchinson, 1996), by digitized 2.5 m equidistance contours, using Topo to raster interpolation 

method (Hutchinson, 1988, 1999, 2000) of the Spatial Analyst extension in the ArcGIS 10. DEM has been 

further used to generate SLOPE and ASPECT rasters (Burrough, 1998). 

Urban planners consider ASPECT to be a significant attribute when projecting urban development (Tošković, 

2006), since it is necessary to calculate the solar illumination for each location/cell/pixel (Daniels, 1997). 

Criteria used for this model is that the most suitable for building are the flat and westward exposed terrains. 

Vice-versa, the least suitable is a terrain exposed to the north (Fig. 2-c). However, for the basic 

experimenting design, non-classified (continual numeric) ASPECT has been used. 

 

Fig. 2. Dataset: a) Ground compressibility (1=Very Low, 2=Low, 3=Medium, 4=Very High, 5=High); b) Land 

Cover (1=Built-up area, 10=Suitable for the urbanization, 40=Conditionally suitable for the urbanization, 

70=Unsuitable for the urbanization, 100=Very unsuitable for the urbanization); c) Aspect (scale in degrees); d) 

Slope (20=Very Low, 40=Low, 60=Medium, 80=Very High, 100=High) 

e) Hydrology (distance in meters) f) Protected areas (1=Non-protected, 100=Protected) 
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SLOPE raster is found significant for the model since all of the landslides on the territory of the City of 

Belgrade are formed on slopes greater than 7° (Djurić, 2011). Therefore, lower slope values as well as flat 

terrain were considered to be more suitable for building and vice versa (Fig. 2-d). 

HYDROLOGY raster was made by buffering (Euclidian distance module in ArcGIS 10) digitized occasional 

and permanent stream flows, (Fig. 2-e). Streams were digitalized from Topographic maps of Belgrade (scale 

1:100 000). 

PROTECTED AREAS is an attribute raster resulting from compiling two maps: Zones of Sanitary Protection 

of Fresh Water Sources and Swamp Habitat, both on the administrative territory of the City of Belgrade. 

Extents of registered features are digitized from existing maps. According to the current legislation and Rule 

Book for defining and maintaining zones of sanitary protection of sources for water supplying, “zone of 

sanitary protection is an area around water supplying object, where building and activities of built objects as 

well as the conducting of any other activity is being surveyed”. Swamp habitat is considered to be an area 

either protected by the decree of Institute of Nature Conservation of Serbia in order to protect biodiversity or 

simply not suitable for building because of its geotechnical characteristics. Therefore, marked territories from 

both maps were considered as areas where building is forbidden, hence evaluated as not suitable (Fig. 2-f). 

METHODS 

Support Vector Machines (SVM) algorithm is a sub-branch of Neural Network algorithms, which has been 

proven successful in various applications, including different types of spatial modelling (Brenning, 2005). 

Herein, this state-of-the-art machine learning algorithm has been implemented in a typical supervised classi-

fication learning task, which could be briefly described as follows. 

The main objective is to exploit the possibility of automating the process of mapping, i.e. making a plausible 

prediction of spatial distribution of land-use suitability (LUS) classes C={c1, c2,…,cl}, where l stands for the 

number of LUC classes. The procedure assumes that there is a reliable interpretation of LUS classes in one 

representative region, called training region. Let P={xxR
n
} be the set of all possible pixels extracted from 

the raster representation of a given area, then each pixel instance x is represented by n-dimensional vector 

x={x1, x2,…,xn}, where each xi represents one of the n attributes (geology, land cover, stream buffer, slope, 

aspect and protected areas). A function fc which maps PC is called a classification if for each xP it holds 

that fc(x)=cj whenever a pixel x belongs to the LUS class cj. For a given training area, there is a limited set of 

m examples (xi, cj), xiR
n
, cjC; i=1,…,m. The machine learning approach tries to find a function fc

’
 which is 

a good approximation of unknown function fc, using only the examples from the training set. 

Originally, SVM is a linear binary classifier, but one can easily transform l-classes problem (multinomial clas-

ses) into a sequence of l (one-versus-all) or l(l-1)/2 (one-versus-one) binary classification tasks, where using 

different voting schemes leads to a final decision (Belousov et al, 2002; Witten et al, 2011). For the simplici-

ty, let a binary training set (xi,cj), xiR
n
, cj{-1,1} be considered. SVM algorithm attempts to generate a sepa-

rating hyper-plane in the original space of n coordinates between two distinct classes (Fig. 3). During the 

training stage the algorithm seeks for a hyper-plane which best separates the samples of binary classes 

(classes 1 and –1). Let h1: wx+b=1 and h-1: wx+b=–1 (w,xR
n
, bR) be the possible hyper-planes such that 

majority of 1 class instances lie above h1 (wx+b>1) and majority of –1 class fall below h-1 (wx+b<–1), where-

as the elements belonging to either h1, h-1 are defined as Support Vectors (Fig. 3). Finding another hyper-

plane h: wx+b=0 as the best separation assumes calculating w and b, i.e. solving the nonlinear convex pro-

gramming problem. The best separation can be formulated by defining the maximum margin M between the 

two classes. Since M = 2w
–1

, maximizing the margin leads to the constrained optimization problem and 

obtaining optimal w*. Despite of having some instances misclassified it is still possible to balance between 

the incorrectly classified instances and the width of the separating margin by introducing the positive slack 

variables εi and the penalty parameter C, representing (i) the distances of misclassified points to the initial 

hyper-plane and (ii) the penalty for misclassified training points, that trades-off the margin size for the num-

ber of erroneous classifications, respectively. The goal is to find a hyper-plane that minimizes misclassifica-

tion errors while maximizing the margin between classes, which is done by solving the optimization problem 
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(in its dual form).  Support Vectors for which C>i>0 condition holds, belong either to h1 or h-1 (their w* is a 

non-zero value). Let xa and xb be two Support Vectors (C>a,b>0) for which ca=1 and cb=–1, such that b 

could be calculated from b
*
=–0.5w

*
(xa+xb), so that: 






g

i

iiiic bcf

1

*' )(sgn)( xxx  . 
 

(1) 

It is desirable to further increase the dimensionality of R by introducing kernel function which maps R
n
R

d
, 

n<<d, i.e. x(x), thus allowing the basic linear variant of the SVM classifier (Eq. 1) to be applied in the R
d 

space, and then retransformed back to the original R
n
 space. The most common are Radial-Basis Function 

kernels, with their dimensionality defined by the kernel width γ (Witten et al, 2011). Thus, it is possible to 

model the function by optimizing only two parameters C and γ (hypothetically, on a significantly smaller train-

ing sets sizes). 

The SVM algorithm has been implemented in Weka 3.7. developer suite, with LibSVM extension package. 

 
Fig. 3. General binary classification case. Shaded points represent misclassified instances 

RESULTS AND DISCUSSION 

The input data have had to be pre-processed to reduce the computational cost of the model. In this context, 

the following measures were undertaken: nominal data, such as COMPRESSIBILITY and LAND COVER 

have been binarized into the appropriate number of dummy variables (0 and 1 class), while ordinal data have 

been 0–1 normalized. The set finally contained 14 input attributes (4 original and 10 synthetic dummy attrib-

utes) derived from the original input set (Fig. 2) and the LUS class reference. 

The SVM experiment has been designed so that approximately one third (292918 instances) of the total area 

has been used for training and the remaining two thirds (977097 instances) for testing of the algorithm. 

These splits were selected in accordance with the administrative extents of the city territory (MP territory and 

wider territory of the City of Belgrade), thus disabling strategies for balancing of the LUS classes in train-

ing/testing splits and limiting the possibilities for improving the training. The only optimization measure has 

thus been involved by adjusting the C, γ parameter pair during the optimization stage, done through a 5-fold 

cross-validation (for both models, MODEL1 and MODEL2 as proposed later) over the training split. This pro-

cedure has been involved in order to prevent the overfit problem, which causes overoptimistic training, while 

yielding poorer results in the test split. Due to the considerable time-consumption (in each cross-validation 

cycle the classifier building lasted for 10 h, while implementation took another 2 h on conventional machine 

with the following configuration: Intel i5 processor 3.3 GHz, 16GB RAM, 3GB of which were available for the 

Java emulation by the 64-bit OS Windows 7) the optimization of the parameters was also rather limited. Only 

four combinations of the following C, γ pairs were considered (100, 4) and (10, 0.1). Higher accuracies were 

achieved with the first pair, hence C=100 and γ=4 were the parameters of choice. 

Since the model could have been evaluated in the testing area by the incomplete LUS reference, involving 

only Unsuitable and Very Unsuitable class, the model was first built on the modified training reference, 

wherein the Conditionally Suitable and Suitable classes (=0) were merged against Unsuitable and Very Un-
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suitable (=1), leading to a binary classification task. This model was labelled as MODEL1. Subsequently, 

MODEL2 was proposed as a hypothetic model of the original (all four) suitability classes mapped onto the 

testing area. The difference is thus that MODEL1 trained on only two classes while MODEL2 trained over all 

four LUS classes, but they bout could be evaluated by those two classes. The hypothesis implies that if 

MODEL1 yields a plausible result it is justified to assume MODEL2. MODEL2 thus relied on its ability to dis-

tinguish between Conditionally Suitable + Suitable class versus Unsuitable + Very Unsuitable class, while 

distinguishing among all four classes could not be properly validated due to the lack of a complete LUS ref-

erence for the testing area. However, if it shows a similar success as MODEL1 in distinguishing Conditionally 

Suitable + Suitable versus Unsuitable + Very Unsuitable, it is most certainly capable of distinguishing among 

all four suitability classes (Very Unsuitable, Unsuitable, Conditionally Suitable and Suitable), giving a com-

plete, predictive model of LUS. 

For the easier notation let class Conditionally Suitable + Suitable equal CLASS0 and Unsuitable + Very Un-

suitable CLASS1. Results of the MODEL1, with 89.28% of accuracy, seemingly sound very convincing and 

go in favour of the model. Visually (Fig. 4) it is also a suggestive model, which manages to capture some 

regularity in the pattern distribution and follows the trends from the training area. However, the shear figures 

of the class-specific performance measurement are rather unbalanced (Table 3), because MODEL1 seems 

to map CLASS0 much more efficiently than CLASS1. Very high True Positives rate (TP rate) reaching 0.98 

suggests solid precision for mapping CLASS0, while TP rate for CLASS1 reached only 0.04, yielding aver-

age of 0.89 for both classes. In the same time, False Positive rate (FP rate) was high in CLASS0 and low in 

CLASS1, which gave very poor performance considering some FP-TP rate trade-off measurement (such as 

ROC Area for instance), making the MODEL1 result plausible but disputable.  

Table 3. Contingency Tables of MODEL1 and MODEL2 

 

 
LUS reference 

 

 
LUS reference 

true false true false 

M
O

D
E

L
1
 positive 

(CLASS0) 
868780 20013 

M
O

D
E

L
2
 positive 

(CLASS0) 
829019 77251 

negative 
(CLASS1) 

84737 3567 
negative 

(CLASS1) 
59545 11047 

Nevertheless, a relieving circumstance is that the size of CLASS1 was much lower than that of CLASS0, 

which is a common case in the spatial prediction framework. Herein, the CLASS1 counted less than 10% in 

both, training and testing splits. This practically means that out of 88304 CLASS1 instances, only 3567 were 

correctly classified but the class size which it was working against (CLASS0) was much bigger, nearly 9 

times as much. This aspect has been considered in MODEL2, and as expected, some improvements were 

noticed. Thus, the outcome of MODEL1 can be taken with certain reserve. Perhaps the best way to truly 

evaluate the performance would be with some fuzzyfied similarity approaches, such as Fuzzy Kappa statis-

tics (Hagen, 2002). 

MODEL 2 has been trained under the same experimenting design, i.e. using the same C, γ parameter pair 

(100, 4) after 5-fold cross-validation, and the same training/testing splits. As indicated above, the balance of 

the classes was slightly more convenient, and accordingly, the results have been improved (Figure 5). In 

MODEL2 overall accuracy reached 85% which is similar to MODEL1, but has significantly better TP/FP rates 

for CLASS0 and CLASS1 (0.91 and 0.84, respectively). Particularly encouraging are the trends and patterns 

which are extending from the referent LUS map (the bold contoured – training area in Fig. 5), which is evi-

dent from the visual inspection of the map (note the continuation of the units bordering the training area in 

Fig. 5).  

The initial post-processing (filtering by 8x8 majority filter) did not resulted in higher precision, but the fact that 

there are some logical errors (class islands, pixelation and so forth) which should be exploited by some more 

advanced filtering scheme. 
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Fig. 4. SVM MODEL1. LUS CLASS1 of MODEL1 is shown red. Referent (testing) LUS CLASS1 (Unsuitable 

+ Very Unsuitable) shown in black contours. Training area (MP area) is contoured bold black. 

 

Fig. 5. SVM MODEL2. 1=Suitable, 2=Conditionally Suitable, 3=Unsuitable, 4=Very Unsuitable. Referent 

(testing) LUS CLASS1 is shown in black contours. Training area (contoured bold black) shows a present 

LUS map based on MP for the City of Belgrade.  
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CONCLUSION 

The study completes a typical supervised machine-learning-based classification task, targeted at prediction 

of the spatial distribution of referent LUS classes on the area with unknown LUS. Modelling design followed a 

typical training/testing configuration by using the state-of-the-art SVM machine learning algorithm. The 

results prove convincing, reaching high accuracies for some classes, allowing a speculation on the actual 

application of the model (if the interest of the corresponding city service proves realistic). The biggest 

shortcoming of the model concerns the Unsuitable + Very Unsuitable class, which does not yield significant 

accuracy. In this context, some progress is evident in transiting form MODEL1 to MODEL2 which has to be 

related to the fact that class balance plays important role in the learning process, thus favoring the result of 

MODEL2 which has more classes than MODEL1, and therefore a better balance of the class populations 

available for learning. However, this is an on-going research and there are several directions to look for 

improvements. Firstly, more advanced post-processing schemes could be involved to eliminate logical errors 

and therefore raise the modelling performance. Secondly, input dataset could be enriched with some 

additional data, e.g. water table levels, or data from borehole sampling (if these become at disposal by the 

courtesy of corresponding city services). Finally, the model could be improved by more thorough optimization 

of the classifier parameters, which will require much longer experimenting costs (time-wise). 
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