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Abstract

The selection of optimal path is one of the classic problems in graph theory. Its utilization have various
practical  uses  ranging  from  the  transportation,  civil  engineering  and  other  applications.  Rarely  those
applications take into account the uncertainty of the weights of the graph. However this uncertainty can have
high impact on the results. Several studies offer solution by implementing the fuzzy arithmetic for calculation
of  the optimal path but even in those cases neither of  those studies proposed complete solution to the
problem of ranking of the fuzzy numbers. In the study the ranking system based on the Theory of Possibility
is used. The biggest advantage of this approach is that it very well addresses the indistinguishability of fuzzy
numbers. Lengths of the paths are compared based on the possibility and the necessity of being smaller
than the alternative. The algorithm offers  the user more information than only the optimal path, instead the
list  of  possible  solutions  is  calculated and the  alternatives  can  be ranked using the possibility  and the
necessity to identify the possibly best variant.
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INTRODUCTION

The selection of optimal or least-cost path through space is one of the common issues in the GIS. The
optimal path may be chosen either in a network or on a surface. In both cases the algorithms used for
selecting optimal path are based on graph theory, so there is actually little difference between the raster and
the  vector  datasets.  The  range  of  possible  utilization  is  very  wide,  from  route  planning  to  many  civil
engineering applications especially in construction of various networks [14]. 

Like any other  type of  data  even data for selecting optimal  path  are affected by uncertainty.  The main
uncertainty affecting selection of optimal path is the uncertainty of weights or in other words cost for travelling
from one node to another. These weights of edges can represent many real world phenomena, for example
geographical distance of nodes, time necessary to cover the distance or amount of fuel needed for this
particular distance. While distance can be measured quite exactly it is not particularly suitable as a measure
for finding optimal path [9], mainly because distance alone does not tell anything about fitness of the solution.
On the other hand, the time and/or amount of fuel necessary for travel are good indicators for optimal path
selection. Yet none of those two can be expressed exactly for real world problems. Both of them are highly
dependant on many other variables and thus unfit to be expressed as a crisp number [11]. It is much better
to express them as a vague and ill-know values, using fuzzy set theory as fuzzy numbers [2].

Modifications of the Dijkstra and other algorithms for selection of the optimal path were studied in several
studies [2,5,7,8,9,11,12,13,14]. All of those papers aims at calculating the optimal or the shortest path in a
network when the uncertainty of the arc weights is presented in the graph, however each of these studies
utilize different ways to obtain the results. The process has two main challenges that have to be addressed in
order to produce the algorithm. These challenges are addition of the fuzzy numbers and their ranking. The
addition of fuzzy numbers is usually described for the triangular and the trapezoidal fuzzy numbers [2,7,11],
however these are not all the possible shapes of the fuzzy numbers and other variants can be also used.
The  addition  is  presented  for  mentioned  shapes  mainly  because  it  can  be  easily  implemented  and
calculated. But there are more general solutions that work for variety of other fuzzy number shapes [6].
Some authors [2] even use methods that provides a crisp value as the result of addition of fuzzy numbers.
While this may be easier for further ranking of the results it leads to the loss of information about vagueness
and/or imprecision of the fuzzy number.
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The second challenge that need to be solved is ranking of fuzzy numbers. As noted by Dubois and Prade [4]
there is no natural total-ordering structure for a set of fuzzy numbers and many of the approaches to the
problem are either counter-intuitive and/or consider only one point of  view on the matter.  Some studies
propose algorithms where any of indices for comparison of fuzzy numbers can be used [7]. While some use
specific indice or even distance of fuzzy numbers for their ranking [9,13]. While all mentioned approaches
have their possible use, none of them really address the problem of indistinguishability and overlap of fuzzy
numbers, which certainly should be solved. The solution can be found in use of Possibility theory and indices
proposed by Dubois and Prade [4].

The main advantage of the proposed algorithm is in generalization of fuzzy numbers addition. There is no
assumption about shape of fuzzy numbers, instead the methods that use piecewise linear fuzzy number are
used. Such fuzzy numbers can have any shape. The framework of Possibility theory is used for ranking of
fuzzy numbers for calculation of possibility and necessity of equality and/or exceedance of fuzzy numbers.

The structure of  paper is following: Section 2 offers basic preliminaries and notions of  graph theory,  for
further elaborations about this topic please see [1]. Section 3 briefly summarizes informations about Fuzzy
numbers, addition of Fuzzy numbers and ranking of Fuzzy numbers in framework of possibility theory. The
proposed Algorithm is shown in section 4 and a case study is presented in section 5. The discussion and
conclusions are presented in section 6.

GRAPH THEORY PRELIMINARIES

Prior to explanation of the algorithm some basic definitions need to be set up, the full reference can be found

in Bondy and Murty [1]. Through the work we consider directed weighted network G(N , A) that consist of

set of nodes N={1,… , n } and a set of directed arcs A={1,… ,m}. Each of these arcs is defined by

an  ordered  pair  of  nodes (i , j) that i , j∈N and  never  i≠ j. Since  the  arcs  are  directed  then

A(i , j )≠A( j , i) . Each of these arcs has a weight,  that specifies cost for passing from start to final

node. Usually this weight w k is specified as a crisp positive number and it is used to identify the optimal

path from starting node to the destination. 

Fig. 1. Simple graph with nodes N i and directed arcs A j.

The selection of optimal path is a process of selecting path from node N i to node N j , where the sum

of the weights is minimal. There are many algorithms that solve the problem proposed by Bellman – Ford,
Dijkstra, Dreyfus and others [8]. Between these algorithms the Dijkstra algorithm [3] is undoubtedly one of
the most commonly used, not only in practical applications, but also in scientific studies [2]. 

FUZZY NUMBERS AND POSSIBILITY THEORY

In case when there is need to model uncertainty that originates in indistinguishability, vagues etc. it is not
suitable to use statistical approaches and alternative approaches is necessary [6]. Alternative framework for
all essential operations can be found in Fuzzy set theory and Possibility theory.

Fuzzy Numbers

Fuzzy numbers are special  cases of  convex,  normal  fuzzy sets  defined on ℝ with  at  least  piecewise

continuous membership function, that represent vague, imprecise or ill-known value [6]. There are several
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types of  fuzzy numbers, commonly used are triangular and trapezoidal ones, however other shapes are
possible as well [6]. Triangular and trapezoidal fuzzy numbers are often used because calculations with them
and their comparison can be done relatively easily, but it is much better if calculations and comparisons can
be done for any shape of fuzzy numbers.

The most general type of fuzzy numbers that can be utilized for calculations are so called piecewise linear
fuzzy numbers, these fuzzy numbers are defined as a set of  α-cuts [6]. They can approximate any given
shape and in their most simple representation are equal to triangular or trapezoidal fuzzy numbers.

If there is need to combine fuzzy numbers with classic crisp values then crisp numbers are treated as special
case of fuzzy number, where all α-cuts are the same degenerative interval [6].

Fuzzy Arithmetic

In order to perform basic arithmetic operations with fuzzy numbers there is need for apparatus that allows
and specifies such operations.  The most  general  form of  such rule  is  specified by so called extension
principle [15],  however this particular definition is complicated in terms of implementation, so alternative
approaches that  utilize  decomposition  theorem and interval  arithmetic  are  used  [6].  The decomposition

theorem states that every fuzzy number (or generally any fuzzy set)  Ã can be described by associated

sequence of α-cuts. An α-cut is an interval where all the objects have membership at least equal α. Formally

it  can  is  written  as:  cutα( Ã)= Ãα={x∈X∣μ Ã(x )≥α} [6].  Such  α-cut  of  a  fuzzy  number is  always

closed interval Aα=[ aα , aα ]. The only necessary arithmetic operation for determination of shortest path

is addition, using decomposition theorem and interval arithmetic the addition of fuzzy number  Ã , B̃ is

[10]:

Ãα+B̃α=[ aα+bα , aα+bα ] (1)

for each α∈[0,1] . Using this approach the addition of any two fuzzy numbers is possible.

Possibility theory

To allow decision making based on fuzzy numbers there is a need for a system that will allow ranking of
fuzzy numbers. There are several such systems however most of them consider only one point of view on
the problem [4]. The complete set of ranking indices in the framework of possibility theory was proposed in
[4]. This ranking system uses possibility and necessity measures to determine relation of two fuzzy numbers.

Utilization of possibility theory allows also semantically describe fuzzy numbers as possibility distributions
[16]. This semantic than help us explaining what such fuzzy numbers mean. The values with membership
value 1 are believed to be absolutely possible or unsurprising, thus they should cove the most likely result.
With decreasing degree of membership the possibility of obtaining given result decreases and the surprise
rises. When membership value reaches 0 then such result  is  impossible (or almost impossible at  some
cases) and the surprise that  such result  would present is maximal.  Such semantics helps with practical
explanation what the results truly mean.

To asses position of fuzzy number X̃ to the fuzzy number Ỹ four indices are needed [4]. Two of them

define possibility and necessity that X̃ is at least equal or greater than Ỹ :

(2)

(3)

The other two determine if X̃ is strictly greater than Ỹ :

(4)

(5)
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Together these indices allow comparison of any two fuzzy numbers, based on pairwise comparison any set
of fuzzy numbers can be sorted.

For both set of indices there are four situations of the combinations of possibility and necessity that can be
outcome of the calculation. In this paragraph both relations – at least equal or greater, and strictly greater –
are referred as relation, because the descriptions are valid for both pairs of indices. The first situation is

when  Π X̃ ([ Ỹ ,∞))=Ν X̃ ([ Ỹ ,∞))=0, which  means  that X̃ is  definitely  does  not  fulfil  the  given

relation  to Ỹ. Then  there  is  opposite  situation Π X̃ ([ Ỹ ,∞))=Ν X̃ ([ Ỹ ,∞))=1 in  which X̃
completely satisfy the relation. The other two relations contains some uncertainty, because they indicate
certain  results  but  they  can  not  provide  them  absolutely.  The  first  of  those  is  situation  when

Π X̃ ([ Ỹ ,∞))>0 and Ν X̃ ([ Ỹ ,∞))=0. This means that there is possibility that X̃ might satisfy the

relation, but it is not necessary. Obviously that means that the indicators are not strong. The last possible

combination of values is  Π X̃ ([ Ỹ ,∞))=1 and Ν X̃ ([ Ỹ ,∞))>0. In such case again it the relation is

not satisfied absolutely but the indicators are much stronger than in previous case.

THE ALGORITHM

The Dijkstra algorithm was proposed in 1959 [3] and it purpose is to identify shortest path between given
source node of the graph and all the other nodes. With small modification it can be also used to identify
shortest path from starting node to the destination node [2]. It is this variant of the algorithm which will be
shown. The algorithm is relatively simple and makes use of only two operations - addition and comparison of
crisp numbers. The algorithm works in several steps [2]:

1. assign all nodes distance value: zero for the starting node and infinity for all others

2. set all nodes as unvisited, set starting node as current

3. calculate cumulative distances from current node to all its neighbours, if the distance is smaller then
previously recorded distance then overwrite the distance and write the previous node

4. set all neighbours of the current node as visited

5. move to next unvisited node

6. if all the nodes were visited stop the algorithm.

The distance from one node to  another  is  equal  to  the weight  of  the arc between those nodes in  the

necessary direction. The distance of node N i from starting node is equal to the sum of distances between

those two nodes. For each node we store the distance from the starting node and also the previous node on
the path from starting node. That way the shortest path from any node to the starting node can be identified
easily.

From the definition of the algorithm it is obvious that there is only one solution to the problem of finding
optimal path between two nodes if such path exists. However identification of such ideal path is only possible
in  the  environment  without  uncertainty.  As  soon  as  uncertainty  is  introduced  there  maybe  be  several
solutions that can be hard or impossible to order. For the modified version of Dijkstra algorithm there is no
assumption of one ideal path, in fact there is assumption that several such paths exist and that there are
differences that allow their basic ordering. 

There are several modifications to the algorithm. First is that all the weights in graph are expected to be
fuzzy numbers. The calculation on distances from starting node to neighboring nodes is done according to
decomposition theorem and Eq.  (1). The second change of the algorithm is that for each node the list of
distances is stored (Code Sample 1). 
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Code sample 1. Dijkstra algorithm (modified from: [2])
function Dijkstra(Graph, source):
  for each vertex v in Graph:            // Initializations
    v.distanceList.add(infinity);        // Each vertex stores list of distances
  end for                                                     

  source.distanceList.add(0);            // Distance from source to source
  Q = the set of all nodes in Graph;    

  while Q is not empty:                  // The main loop
    
    u = vertex in Q with smallest distance to last visited node or source;    
    remove u from Q;

    if u.distanceList.contains(infinity):
      break;                                      // all remaining vertices are
    end if                                        // inaccessible from source
        
    for each neighbor v of u:   // where v has not yet been removed from Q
                                // the distance is calculated for fuzzy numbers
      newDistanceList = calculateDistance(u.distanceList, dist_between(u, v));  
      v.distanceList = compareFuzzyValues(v.distanceList, newDistanceList);
            
      select new v in Q;      // Reorder v in the Queue
   
    end for
  end while
    
  return distancesLists of all nodes;
end function

When calculating distance of new node there is necessity to take into account all the possible paths to this
node and add the new distance to all of them (Code Sample 2). 

Code sample 2. Calculation of distances for node
//each node may contain more than one solution, the function calculates those
function calculateDistance(distanceList, distance)
  for each distance i in distanceList:
    distanceList[i] = distanceList[i] + distance; // according to Eq.(1)
  end for
  return distanceList;
end function

The next step in the algorithm is comparison of the calculated distance with the distances already known for
the node. Possibility and necessity is calculated according to Eqs. (2,3). There are 3 possible outcomes of
the comparison the new values to the already known distances. First the necessity result may be equal to 1.
Which means that it is definitely bigger, in such case the value is of no interest because the alternative is for
sure shorter.  If  the values of necessity and possibility are both equal to zero than the value is definitely

smaller and it should replace the originally recorded values. If Π X̃ ([ Ỹ ,∞))>0 and Ν X̃ ([ Ỹ ,∞))<1
that is and indicator, that there is overlap between two values and there is no clear preference which is one is
actually smaller. In such case the new value is added to the list (Code Sample 3).

The described algorithm provides list  of  distances for each node. This list  can be ordered according to
pairwise  comparisons  of  fuzzy  numbers  in  the  list  to  produce  best  possible  outcome.  Also  all  several
outcomes can be presented with ranking according to Eqs. (2,3).
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Code sample 3. Comparison of fuzzy distances stored in two lists
//comparison of existing list of distances store for node with list of new nodes
function compareFuzzyValues(distanceList, newDistanceList):

  addToList = false;

  if distanceList is empty:
    distanceList = newDistanceList;
  
  else:
    for each newDistance in newDistanceList:
      for each distance in distanceList:
        possibility = possibility(newDistance >= distance); // using Eq.(2)
        necessity = necessity(newDistance >= distance);     // using Eq.(3)
                
        if necessity = 1:
          break;
        end if
                
        if possibility = 0:
          remove distance from distanceList;
          addToList = true;
        end if
                
        if possibility > 0 and necessity < 1:
          addToList = true;
        end if
      end for
            
        if addToList = true:
          add newDistance to distanceList;
        end if
    end for 
  end if
    
  return distanceList;
end function

The algorithm can be implemented according to the Code samples 1.,  2.  and 3.  The addition of  fuzzy
numbers as well as their ranking is computationally much more complicated operation than same operations
with crisp numbers. Also the algorithm does not search only for one solution but rather for a set solutions
which is also more computationally expensive than the classic Dijkstra Algorithm. Based on these facts it can
be reasoned that the algorithm will be both computationally and time demanding when compared to classic
Dijkstra algorithm. But these are properties of the algorithm that on the other hand allows calculation with the
uncertainty.

CASE STUDY

The case study shows rather simple example of a graph with weights represented as fuzzy numbers or
possibility  distributions.  This  case study may describe real  word example of  travelling in  the city where
weights show time necessary to reach the node. Obviously time cannot be expressed exactly because it may
depend on external conditions that are unknown at the time, when the model was created. Such conditions
could be weather, time when the the travel should be made, amount of traffic etc. Because none of those
conditions can be know in advance, it is reasonable to model them as possibility distributions.

The example used in case study is obvious. A simple graph containing 4 nodes and 5 directed arcs (Fig. 2).
Node  a is a starting point of path and destination node is  d. From the visualization of the graph it is
visible that 3 path can be identified: a→b→d, a→c→d and finally direct path from a→d. Since all the weights

of  the graph are defined as triplets in form [ Ã0, Ã1= Ã1, Ã0] they represents triangular fuzzy numbers.
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Known property of fuzzy numbers is that if they are aggregated the result is again triangular number [6]. So
the Eqs (1) is applied only for α values of 0 and 1. Obtained results are summarized in Table 1.

Fig. 2. Simple graph with fuzzy weights.

Table 1. Resulting path and their lengths of the case study

Path Triangular number
a→b→d [3.6,6,7.3]
a→c→d [4.5,6.4,8.2]
a→d [7.5,8,8.4]

Results can be best asses when they are visualized (Fig. 3). Now the ranking needs to established. Since
the interest is in finding values that are smaller or equal to the given value the Eqs. (2,3) will be used to
calculate possibility and necessity. 

Fig. 3. Results of case study compared in a graph.

The comparison of the obtained results is summarized in Tab. 2. From that can be reasoned that solution
a→d is the worst as it has possibility and necessity of at least equality to both other solution equal to 1. Also
a→c→d ≥ a→d has both possibility and necessity equal to 0 which excludes this solution from set of possible
shortest paths. From comparison of solutions a→b→d and a→c→d it is clear that there is no strict ordering
of these solutions, because there is quite a big overlap. But even such solutions can be ordered, there is
higher both possibility and necessity of a→c→d ≥ a→b→d than a→b→d ≥ a→c→d. Than can be interpreted
as a→b→d being more suitable solution. However the fact that neither of indices is equal to 1 means that the
solutions can not be distinguished very well, in fact they are rather similar (Fig. 3). According to those facts
the results  of  the algorithm can be shortly  summarized by defining solutions  a→b→d and a→c→d as
acceptable solutions, while  a→d is unacceptable solution (Tab. 3).
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Table 2. Comparison of the resulting paths

Comparison Possibility Necessity
a→b→d ≥ a→c→d 0.875 0.349
a→c→d ≥ a→d 0 0
a→c→d ≥ a→b→d 1 0.651
a→c→d ≥ a→d 0.304 0
a→d ≥ a→b→d 1 1
a→d ≥ a→c→d 1 1

Such cases  are classic  situations when presenting both  solution and their  ranking would  be useful  for
decision maker. Mainly because the solutions are quite similar and there is possibility that choosing any of
those might lead to optimal decision. Unfortunately because of the presented uncertainty the solutions can
not be ranked directly.

Table 3. Results of the algorithm
Path Status
a→b→d Accepted 
a→c→d Accepted
a→d Not accepted

DISCUSSION AND CONCLUSION  

The presented modification of the Dijkstra algorithm aims to provide better support of decision making in
situations where uncertainty of the data exists. It  should be helpful mainly by providing all  solutions that
can-not be distinguished, or in other words that have rather high similarity. This is archived by utilization of
Fuzzy  set  theory  and  Possibility  theory  to  manage  the  uncertainty  and  the  vagueness  through  the
calculation. The results obtained from the algorithm provide the user not only with one optimal path but also
with other options that are quite similar under the given amount of uncertainty.

The use of fuzzy numbers as weights in the graph allows better modelling of the real world situations where
the time to travel from one point to another can not be specified exactly, or other similar cases. Specifying
the time as a crisp number can be to much idealization and simplification of  the problem, because the
algorithms for finding optimal path then produce way to idealized solutions that do not take into account
either uncertainty or the amount of dissimilarity of the solutions. 

The proposed algorithm proposes solution to both challenges,  that  were mentioned previously.  It  allows
identification of  optimal  path in uncertain environment.  This  uncertain  or vague environment is  however
better model of reality than exact environment, where all the values are expected to be known precisely. The
second issue is addressed by providing not only one solution but a list  of solutions. This provides more
alternatives that can be ranked using possibility and necessity measures. 

The variant of Dijkstra algorithm is in GIS also used for selecting least cost paths on surfaces [14]. The
proposed algorithm can be used for calculating optimal path on surfaces that contain uncertainty, especially
on so called fuzzy surfaces. Further studies of the topic could be focus on this issue - selection of optimal
paths on fuzzy surfaces.
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	1. assign all nodes distance value: zero for the starting node and infinity for all others
	2. set all nodes as unvisited, set starting node as current
	3. calculate cumulative distances from current node to all its neighbours, if the distance is smaller then previously recorded distance then overwrite the distance and write the previous node
	4. set all neighbours of the current node as visited
	5. move to next unvisited node
	6. if all the nodes were visited stop the algorithm.
	The distance from one node to another is equal to the weight of the arc between those nodes in the necessary direction. The distance of nodefrom starting node is equal to the sum of distances between those two nodes. For each node we store the distance from the starting node and also the previous node on the path from starting node. That way the shortest path from any node to the starting node can be identified easily.
	From the definition of the algorithm it is obvious that there is only one solution to the problem of finding optimal path between two nodes if such path exists. However identification of such ideal path is only possible in the environment without uncertainty. As soon as uncertainty is introduced there maybe be several solutions that can be hard or impossible to order. For the modified version of Dijkstra algorithm there is no assumption of one ideal path, in fact there is assumption that several such paths exist and that there are differences that allow their basic ordering.
	There are several modifications to the algorithm. First is that all the weights in graph are expected to be fuzzy numbers. The calculation on distances from starting node to neighboring nodes is done according to decomposition theorem and Eq. (1). The second change of the algorithm is that for each node the list of distances is stored (Code Sample 1).
	Code sample 1. Dijkstra algorithm (modified from: [2])
	When calculating distance of new node there is necessity to take into account all the possible paths to this node and add the new distance to all of them (Code Sample 2).
	The next step in the algorithm is comparison of the calculated distance with the distances already known for the node. Possibility and necessity is calculated according to Eqs. (2,3). There are 3 possible outcomes of the comparison the new values to the already known distances. First the necessity result may be equal to 1. Which means that it is definitely bigger, in such case the value is of no interest because the alternative is for sure shorter. If the values of necessity and possibility are both equal to zero than the value is definitely smaller and it should replace the originally recorded values. If andthat is and indicator, that there is overlap between two values and there is no clear preference which is one is actually smaller. In such case the new value is added to the list (Code Sample 3).
	The described algorithm provides list of distances for each node. This list can be ordered according to pairwise comparisons of fuzzy numbers in the list to produce best possible outcome. Also all several outcomes can be presented with ranking according to Eqs. (2,3).
	The algorithm can be implemented according to the Code samples 1., 2. and 3. The addition of fuzzy numbers as well as their ranking is computationally much more complicated operation than same operations with crisp numbers. Also the algorithm does not search only for one solution but rather for a set solutions which is also more computationally expensive than the classic Dijkstra Algorithm. Based on these facts it can be reasoned that the algorithm will be both computationally and time demanding when compared to classic Dijkstra algorithm. But these are properties of the algorithm that on the other hand allows calculation with the uncertainty.
	The case study shows rather simple example of a graph with weights represented as fuzzy numbers or possibility distributions. This case study may describe real word example of travelling in the city where weights show time necessary to reach the node. Obviously time cannot be expressed exactly because it may depend on external conditions that are unknown at the time, when the model was created. Such conditions could be weather, time when the the travel should be made, amount of traffic etc. Because none of those conditions can be know in advance, it is reasonable to model them as possibility distributions.
	The example used in case study is obvious. A simple graph containing 4 nodes and 5 directed arcs (Fig. 2). Node a is a starting point of path and destination node is d. From the visualization of the graph it is visible that 3 path can be identified: a→b→d, a→c→d and finally direct path from a→d. Since all the weights of the graph are defined as triplets in formthey represents triangular fuzzy numbers. Known property of fuzzy numbers is that if they are aggregated the result is again triangular number [6]. So the Eqs (1) is applied only for α values of 0 and 1. Obtained results are summarized in Table 1.
	Results can be best asses when they are visualized (Fig. 3). Now the ranking needs to established. Since the interest is in finding values that are smaller or equal to the given value the Eqs. (2,3) will be used to calculate possibility and necessity.
	The comparison of the obtained results is summarized in Tab. 2. From that can be reasoned that solution a→d is the worst as it has possibility and necessity of at least equality to both other solution equal to 1. Also a→c→d ≥ a→d has both possibility and necessity equal to 0 which excludes this solution from set of possible shortest paths. From comparison of solutions a→b→d and a→c→d it is clear that there is no strict ordering of these solutions, because there is quite a big overlap. But even such solutions can be ordered, there is higher both possibility and necessity of a→c→d ≥ a→b→d than a→b→d ≥ a→c→d. Than can be interpreted as a→b→d being more suitable solution. However the fact that neither of indices is equal to 1 means that the solutions can not be distinguished very well, in fact they are rather similar (Fig. 3). According to those facts the results of the algorithm can be shortly summarized by defining solutions a→b→d and a→c→d as acceptable solutions, while a→d is unacceptable solution (Tab. 3).
	Such cases are classic situations when presenting both solution and their ranking would be useful for decision maker. Mainly because the solutions are quite similar and there is possibility that choosing any of those might lead to optimal decision. Unfortunately because of the presented uncertainty the solutions can not be ranked directly.
	Discussion and conclusion

	The presented modification of the Dijkstra algorithm aims to provide better support of decision making in situations where uncertainty of the data exists. It should be helpful mainly by providing all solutions that can‑not be distinguished, or in other words that have rather high similarity. This is archived by utilization of Fuzzy set theory and Possibility theory to manage the uncertainty and the vagueness through the calculation. The results obtained from the algorithm provide the user not only with one optimal path but also with other options that are quite similar under the given amount of uncertainty.
	The use of fuzzy numbers as weights in the graph allows better modelling of the real world situations where the time to travel from one point to another can not be specified exactly, or other similar cases. Specifying the time as a crisp number can be to much idealization and simplification of the problem, because the algorithms for finding optimal path then produce way to idealized solutions that do not take into account either uncertainty or the amount of dissimilarity of the solutions.
	The proposed algorithm proposes solution to both challenges, that were mentioned previously. It allows identification of optimal path in uncertain environment. This uncertain or vague environment is however better model of reality than exact environment, where all the values are expected to be known precisely. The second issue is addressed by providing not only one solution but a list of solutions. This provides more alternatives that can be ranked using possibility and necessity measures.
	The variant of Dijkstra algorithm is in GIS also used for selecting least cost paths on surfaces [14]. The proposed algorithm can be used for calculating optimal path on surfaces that contain uncertainty, especially on so called fuzzy surfaces. Further studies of the topic could be focus on this issue - selection of optimal paths on fuzzy surfaces.
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